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\ ABSTRACT

A class of production correspondences for which nonproportional
scaling of inputs (outputs) result in fixed scaling of outputs
(inputs) is introduced. Such correspondences termed, almost
ray-homothetic contain the ray-homothetic structure as a special
case. Although more general this scaling law maintains the

linearity of expansion paths, and under special conditions on
the input (output) set it is shown that linear expansion under
nonlinear change of inputs (outputs) imply almost ray-homothetic
output (input) structure.




ALMOST RAY-HOMOTHETIC PRODUCTION CORRESPONDENCES
by

Rokaya Al-Ayat and Rolf Fare

1. INTRODUCTION

Production correspondences exhibiting certain scaling laws have been
investigated over the years. Apart from the simple homogenous technologies,
Shephard in [8], [9] introduced and studied semi-homogenous and homothetic
structures and Eichhorn (see [1], [2], [3]) developed the class of quasi-
homogenous production correspondences. It was shown in [5], that these
various structures can be generated as special classes of the family of
ray-homothetic structure, which in turn was characterized in terms of linear
expansion paths. One should recall, that expansion paths are determined
by the support vectors for benefit maximization (cost minimization) under
fixed output (input) prices and proportional changes in inputs (outputs).

In this paper the more general class of almost ray-homothetic input
and output structures will be introduced. In contrast to the above scaling,
nonproportional changes in the inputs (outputs) will be allowed. It will
be shown, however, that while generalizing the ray-homothetic class, the
linearity of output (input) expansion path for almost ray-homothetic
will still be preserved under nonlinear expansion of inputs (outputs).

The arguments to follow in this paper are carried out within the
framework for a production technology introduced in [9]. A mapping

Rm

X+ Px) e 2 +, of input vectors x € m: to subsets P(x) of all output

vectors u € m& obtainable by x 1is called an output correspondence.
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Inversely, the input correspondence u - L(u) : = {x | u € P(x)} determines
the set of all input vectors yielding the output vector u eim$ . Both

L(u) and P(x) are assumed to satisfy the inversely related set of

weak axioms in [9]. Unless specifically indicated, free disposability

of inputs or outputs together with convexity of L(u) or P(x) are not

enforced.




2. ALMOST RAY-HOMOTHETICITY

Ray-homothetic production structures were introduced in [5] to
model technologies for which proportional changes in inputs (outputs)
result in a fixed scaling for each output (input) mix TET (TﬁT) -

An extension of this class of technologies is introduced here to include
those for which nonpropertional scaling of inputs (outputs) scale
outputs (inputs) as above. For this reason the output correspondence

x > P(x) 1is defined to be almost ray-homothetic by:

Definition 1:

The output correspondence x - P(x) 1is called Almost Ray-Homothetic

if and only if

a

a
ay o, an = Xps eees R xn)
(1 58 | B i xl,k CXpyoeees Al B F « P(x)

a
F(A l- xl,k

for X > 0 , a; > 0 (1 =11,2, ..., n) where F(x) is nonnegative scalar
valued function compatible with P(x) .

In the special case of a; =a >0 (i=1,2, ..., n) , almost ray-
homotheticity becomes (simply) ray-homotheticity, i.e.,

P(u'x)=%ﬁ~P(X),u>0

or equivalently,




where le denotes the norm of x € n{: .
The input correspondence L(u) : = {x | u € P(x)} 1is similarly

defined to be almost ray-homothetic by:

Definition 2:

The input correspondence u —+ L(u) is Almost Ray-Homothetic if and

only if

8, B

B8 G(;Bl- u 9820 u GBm' u )
2 m 12 ZanEr m
2) L(G . ul,e *Ugy eeey (: E um)

G (u)

* L(u)

r TaE=ORs Bi >0 (i=1,2, ..., m) where G(u) 1is a scalar valued
tion compatible with u - L(u)
Clearly, if Bi =g>0 (i=1,2, ..., m) , (2) reduces to a ray-

homothetic input correspondence,

_ 6u)
o i
\Cl

To elucidate the nature of almost ray-homothetic correspondences, a simple
example of such structure is next given. Let x = (xl,xz) s = (ul,uz) 5

consider

yeo(x) |

P(x) = ¢(x) « e (ul,uz) | 0 < uy

i

x, >0 (i=1,2) and P(0) = {0} and where ¢(x) =.(61

~1/a
a
Xy ) is a Mukerji production function (see [6], [7]) and ¥ >0.
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It is easy to see that (3) is an almost ray-homothetic but not (simple)
ray-homothetic output correspondence.

If the output correspondence is almost ray-homothetic, then clearly,

o, o a a
1 2 n
P(A . xl,A * Xy eees A . xn) =T(A\,x) * P(x) , where T'(A,x) is

a given function compatible with this structure, suggesting:

Proposition 1:

The output correspondence is almost ray-homothetic if and only if

[

&3 2 %n
4) P(A . xl,k * Xgy eee, A . xn) =T(,x) *» P(x)

where T(A,x) is a scalar valued function compatible with the output

correspondence.

Proof:

It is sufficient to prove that (4) implies (1). From (4) with

Ay u>m,

o a, )
P((l Ty . xl,(k s u) * Xy, eeey (A0 W) 20 xz) = TI(L = 1Uyx) * P(x)

o

o a a a a
1 i 2
= P(k,u . xl,u * Xgs cees M B xn) . P(u S xl,u * Xgy eees M G xn)

a

" 2 *n
=T A,u = XI,U " xz, veey M » xn = P(u,x) o P(x) s

implying that T (),x) satisfies the functional equation

s 1 a2 %n
(5) T(A » u,x) =TlA,u * X M *Xpy sees M F N CRyat):




R

1/a
To find the general solution of (5), write X, = (xi ) (o o e )
1/a

and define yi = %Xy Furthermore, take A = (u - lY')—l , and (5)

becomes

a a a

1 ( o o o
r S G = ) * (o = 9,) g we-y)"™
T;T3yl ,yZ | T (T__T_ET 7 3 2 % 2 n

(6) 2 g %n
= u’yl 9y2 3 ey Yn .

-1
Qe O a S o a
A 52 n 1 e 2 n
Now, define F(y1 Yy s ees Vo ) . = [P(T;Tyyl ¥y v wnvas ¥ )] s i

then by (6),

=

\/

DUy

Bt

n

b = 0‘n\
F(u @ o, aﬂ) % F\Gu - P b G S ) T, wees (M 5 )

)y ,y b LB | y
e 2 2 al a2 an §
}’l QYZ : i yn f

; i "2 “n
b r H - xl,u . x2, ey M ) xn
M F(u,xl,xz, Aot xn) = | T xn) o

Moreover, (7) solves the functional equation (5). Hence the proposition

is proved. Q.E.D,

If the function F 1is almost homogeneous i.e.,




then the output correspondence is also almost homogeneous, i.e.,

o
P(A i, xl,A o ota g P (x)

Next, consider the functional equation (4) with TI'(A,x) replaced by

o
Z (A O,¢(x)) , where ¢ 1is an almost homogeneous scalar valued production

function, o, > 0 and z is compatible with the output structure. In

0
this case it will be shown that

a

a o a
2 F\>
(8) P()‘ : . xl’A * x29 ceey A 2 s xn) = (A

0
F(¢<f%§X)) ch

Note that for P(x) = [0,F(¢(x))] C-R, , the scalar valued production
function resulting from (8), H(x) : =max {u | u e [0,F(¢(x))]} , is then

almost homothetic.

Proposition 2:

The output correspondence is of the form (8) if and only if
%0
) (A ,¢(x)) . P(x)

1 o2 9
where ¢(A . xl,k * Xpy o ees ‘ A + ¢(x) 1is an almost
homogeneous scalar valued production function and Z is compatible with

x »> P(x)

Proof:

It is clearly sufficient to prove that (9) implies (8). For

A, y >0 using similar argument to that of Proposition 1,




(0] a o o
an  I{o-w Cew) = I (1% 060) - 1 (nCem) -

Define the function F(a) Z (a ;1) ‘andi'take " <= 1 . & =

From (10) it then follows that

oy ) (A“o ¢(x)) 3 (A 0. 4x)
: 2 ~ F(e(x))

Observing that (11) solves (10), the proposition is then proved. QE.D,

From the above discussion of the output structure and from the
definition of almost ray-homothetic input structure it is clear that

u > L(u) 1is almost ray-homothetic if and only if

8 8 g
(12) L<e L u 8 e e um)= Selu) « Liu)

where A(6,u) 1is a scalar valued function compatible with u - L(u) ,

Bi > Gl = e et e A O E S ()
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3. EXPANSION PATHS

In [5] properties of expansion paths in the input (output) space

resulting from proportional expansions of outputs (inputs) under fixed
prices were discussed. Especially, it was shown that under the strong
axioms ray-homothetic input (output) structure is a necessary and
sufficient condition for linear inputs (outputs) expansion paths.
Here, nonlinear expansions of inputs (outputs) resulting in linear
output (input) expansion paths are examined under almost ray-homothetic ]
output (input) structure. For this reason, define the cost minimization
set C(u,p) for Input prices p > 0 (i.e., p >0 but p # 0) and ;

output u > 0 with L(u) nonempty by
Clu,p) = {x | x € L) ,p * x = QCu,p)} , ]
where Q(u,p) is the cost function given by

Q(u,p) =min {p » x | x € L(u)} .

i

With these notions, nonlinearily induced linear input expansion paths
may now be defined.
Definition 3:

Given p > 0 and u > 0 with L(u) not empty, the (81,82, $any Bm) -

nonlinear output expansion has linear input expansion paths if and only

if there exists a scalar valued function A(8,u) > 0 such that

81 B2 Bm
cle . ul,e T Uy, eees ] b R A(B,u) C(ul,uz, g um,p) :

SO

‘i
“
L
i
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The relationship between the above nonlinearily induced expansion paths
and almost ray-homothetic input structures is next explored. For this

input structure, the cost function will satisfy

B
sy iy B A p=minpx|xe
2° ’ m) G(U)

B B B
G(Bl-u,ez’u,...,ﬁm-u)
= 1 : B2« Q(u,p)
G(u) sP

for 6 >0 p>0 and u >0 with L(u) nonempty. Hence the cost

minimization set is

B B B
8 g8 B8 ] L 20 & B W 2 o
1 2 m 1 2 m
cpo e a8 Ty, e, Gt u 5P| = ) *C(u,p)
and thus the (81,82, oo ety Bm) - nonlinear output expansion for an almost
ray-homothetic input structure implies linear input expansion paths.

For the converse to hold, further conditions on the input structure
L(u) , are imposed; namely, convexity and free disposability of inputs
(i.e., x' >x e L(u) = x' € L(u)) . The following lemma proved in [5]

is of use.

Lemma 1:

If L(u) is convex for u ¢ EE and inputs are freely disposable,

then L) = U C(u,p) + IR: .
p20

Now, assume that the (61,62, pr Bm) - nonlinear output expansion

has linear input expansions i.e.,

A e
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B B B
2
c(e £ ul,e *Up, .., O L um,p) = A(B,u) ¢ C(u,p) ,

for 6 >0, Bi >0 £l = 1,2, vospym) w20 and p >0 . Since A(B,u)

is independent of p , it then follows

81 8, B
U cle . ul,e T Ugs eees ] oo P By A ,u) = U eitu,p)
p>0 p>0

by adding IQ: to both sides of the above expression and using Lemma 1,
1’

B B B
L(e PR Upy weer B s um)= A(B,u) * L(u)

Hence by arguments similar to those of Proposition 1, the following is

true:

Proposition 3:

Let L(u) be convex for u ¢ n{: and the inputs be strongly dis-
posable, then the (81,82, it Bn) - nonlinear output expansion has
linear input expansion paths if and only if the input structure is almost
ray-homothetic.

For the output structure, introduce

Definition 4:

Let the output prices r > 0 , the inputs x > 0 with P(x) # {0} ,
then the (al,az, vy an) - nonlinear input expansion has linear output
expansion paths if and only if there is a scalar valued function T(A,x) > 0
*1 b “n
such that B|A . xl,A * Xpy eees A B W Ik g%y« B(xl,xz, S xn,r) R

A >0, where B(x,r) = {u | u €& P(x) , r v u=R(x,r)} and R(x,r) = |

max {r + u | ue P(x)} .

L
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Observe that under P(x) convex x € ]f: and output freely disposable

(i.e., ue P = {v | Dsv < u} C P(x)) it can be proved that
E | (see [51),

P(x) = ( U B(x,r) + m“‘)mnf .
r>0 i

and the following proposition is clear.

Proposition 4:

Let P(x) be convex for x e 'Ri and the outputs be strongly

disposable, then the (al,az, Siateiy an) - nonlinear input expansion has
linear output expansion paths if and only if the output structure is

almost ray~-homothetic.

e A g T RS I GV SR S TR Ty




S R EAR MO e g

o SRRy - -
# 13
g
4, INVERSELY RELATED ALMOST RAY-HOMOTHETIC STRUCTURES
New insights into production structures have been gained by assuming
that both the input and the output correspondences obey simultaneously
a certain scaling law. For example, it can easily be shown that if
L(u) and P(x) are homogeneous of degrees o and B , respectively,
then o ¢« B =1 . If the input structure is semi-homogeneous;
(i) L.
u u
TR D B -L(u),u>0,g(m)>0
lé together with a semi-homogeneous output structure;
| {r7)
X X
P(A + x) =2 -P(x),A>0,h<m)>0,
X TR T
then h(T;T) Q(T;T) =1 (see [9]). In [5] it was shown that for
simultaneous quasi-homogeneity;
X u
P(x) = k(|x|) P(T;T) and L(u) = £(|ul) L(F;r)
both structures have to be homogeneous. It was also concluded in [2] 5
and [4] that for simultaneous ray-homothetic input and output structures :
both P(x) and L(u) have to be semi~homogeneous.
No simple result however can be obtained if both the input and the
output structures are almost ray-homothetic. But the following relations
E . hold

o g4 P A, B S ! S s e e T




X X X
P(*’ A(e.u>) : P(A(e,u))= i i D e
> T(A,x)

u u u
A(e’ m,x)) : L(m,x>)= egl = g
> A(B,u)

By

TUpy eee

! % % By
To prove this let 7 xl,k S Xy eees A X e L6 ~« ul,e

B
o™ . um) . Then by almost ray-homotheticity of input and output structures;

which is equivalent to

X X
(15) e F(A’ A(e,u)) 3 P(A(e,u)) :

Also,

o B B B
1 2
S xn)e L(e .0 - uz,...,e'“-um) =

Equivalently,




uel(Q,x) « P X

afe, —=

r(x,x)/;

L o DR m o e b i

From relation§‘f15) and (16), (13) follows. A similar argument apply

to show that (14) also holds.

v
.
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